Hybrid Risk Adjustment for Total Health Expenditures

Manuel García Goñi
Universidad Complutense de Madrid
Pere Ibern
Universitat Pompeu Fabra
José María Inoriza SSIBE
mggoni@ccee.ucm.es

AIES. Firenze, October 19, 2007

Hybrid Risk Adjustment for Total Health

Expenditures

1. Introduction
2. Data and Methodology
3. Hybrid Risk Adjustment
4. Conclusions

Manuel García Goñi
Universidad Complutense de Madrid

Hybonid Risk Adjustment for Total Health Expenditures

1. I ntroduction

2. Data and Methodology
3. Hybrid Risk Adjustment
4. Conclusions

Manuel García Goñi
Universidad Complutense de Madrid

Introduction

Motivation:

- Large increase in Health care costs in last years.
- But the increase is not equal for everyone.
- It becomes important to predict cost for each group of individuals
- Dependence of clinical characteristics (CRG classification system)
- Knowledge of individual total health expenditures (inpatient and outpatient care, drugs,...)

Usually, Risk Adjustment is used to control the cost: Reimbursement to plans based on capitated payment Consequences: tradeoff between selection and efficiency
$+\quad$ Efficiency incentives: benefit from savings

- Selection incentives: avoid unprofitable enrollees. Origin: better predictions

However, Risk Adjustment does not solve the selection problem. Alternatives:

RISK SHARING

- Payment based on ex post information on costs. Used to reduce selection while preserving incentives for efficiency
- Newhouse (1996): mixed payment system (prospective and retrospective) permits tradeoff between selection and efficiency in production. Hybrid system:
- Only prospective: (+) efficiency (-) selection
- Only retrospective: (-) efficiency (+) selection
- Earlier analysis using only drug expenditures

Manuel García Goñi
Universidad Complutense de Madrid

Hybrid Risk Adjustment for Total Health Expenditures

1. Introduction
2. Data and Methodology
3. Hybrid Risk Adjustment
4. Conclusions

Manuel García Goñi
Universidad Complutense de Madrid

Data and Methodology

- Baix Empordà (Girona, Spain)
- integrated healthcare management organization, Serveis de Salut Integrats Baix Empordà (SSIBE):121,720 inhabitants in 2004.
- Only one hospital: Palamós.
- Five areas of Primary Care: Palamós, Torroella, la Bisbal, Palafrugell, and Sant Feliu de Guíxols. Estimation for all except for Sant Feliu de Guixols (incomplete data).
- Individual data for years 2004 and 2005 with $N=92273$ ($N=89722$ in 2004 and $N=90849$ in 2005).
- Information system:
- Identify all the activity (primary care, hospital, or specialist) for each patient
- All the activity is codified in ICD9-CM
- Total health expenditures included pharmaceutical expenditures.

Manuel García Goñi
Universidad Complutense de Madrid

Data and Methodology

- Clinical Risk Group (CRG) classification system:
- classifies individuals in mutually exclusive categories from the clinical perspective using information from contacts between the health system and the patient.
- The CRG software reads the codes for the different contacts,
- assigns a diagnosis category group (CRG)
- then it groups by health status (acute or chronic) defined within a CRG.
- Finally, if the patient is chronic, the system assigns a level of severity.
- There are different aggregation levels
- We use the ACRG2: 55 categories with 176 mutually exclusive clinical risk groups. However, in order to capture better predictions we aggregate some CRG categories (following compatible criteria to the CRG classification) so that the number of individuals in each group is large enough to obtain consistent estimators:
- 95 mutually exclusive CRG categories.

Universidad Complutense de Madrid

Data and Methodology

HealthExpenditures $_{i, t}=f\left(\right.$ age $_{i, t-1}$, sex $_{i}$, HealthStatus $\left._{i, t-1, t}, \varepsilon_{i, t}\right)$
awhere

- Annual health expenditures for individual i ,
- Demographic characteristics (i)
- Health Status (i)

םDifferent models (specification is the linear regression model):
■ Model 1: only demographic information

- Model 2: prospective models
- Model 3: concurrent models

Universidad Complutense de Madrid

Hybrid Risk Adjustment for Total Health Expenditures

1. Introduction
2. Data and Methodology
3. Hybrid Risk Adjustment
4. Conclusions

Manuel García Goñi
Universidad Complutense de Madrid

Hybonid Risk Adjustment

aFollowing Newhouse (1996), we propose to use a hybrid system. We apply the methodology used by:

- R. Adams Dudley, Harold Luft et al. The best of both worlds? Potential of hybrid prospective/concurrent risk adjustment. Medical Care 2003; 41:56-59
- Prospective payment for low expected cost patients (90,7\% population - 51,5 $\%$ expenditure) (they do not include >65 years old belonging to Medicare)
- Concurrent payment for high expected cost patient (with a diagnostic of expected high cost ($9,3 \%$ population - 48,5 \% expenditures)
- They construct the division high-low expected cost through an study of the 100 highest cost conditions in the ICD9-CM classification.
- They are named the VEP100 conditions: Verifiable, Expensive, Predictive conditions. Patients suffering those conditions are presumably those towards risk selection can be addressed.
- We utilize the same classification proposed by Dudley et al. With the VEP100 conditions.
- However, we use it under a different classification system (CRGs)
- In order to provide a sensitivity analysis we also try with the 50 VEP of highest cost.
- Thus:
- prospective payment for individuals not suffering the set of VEP conditions
- Concurrent payment for individuals suffering any VEP condition

Manuel García Goñi
Universidad Complutense de Madrid

Hyborid Risk Adjustment for Total Health Expenditures

Table 1: Descriptive statistics of the sample.

Hybonid Risk Adjustment for Total Health Expenditures

Is that set of VEP conditions valid in our sample?

Table 2: Relative cost weights by the presence of VEP conditions.

	2004			2005		
Presence of VEP100 Conditions	Mean Annual Cost	Mean Annual Relative Cost Weight	Sum patients	Mean Annual Cost	Mean Annual Relative Cost Weight	Sum patients
Patients with no VEP100 conditions	310.17	0.60	77767 (86.73%)	331.07	0.59	78058 (85.90%)
Patients with at least one VEP100 condition	1840.05	3.58	11900 (13.27%)	1954.78	3.49	12791 (14.10%)
Patients with no VEP50 conditions	329.76	0.64	80320 (89.57%)	374.03	0.66	82663 (90.99%)
Patients with at least one VEP50 condition	2089.53	4.07	9347 (10.43%)	2434.41	4.34	8186 (9.01%)
all patients	513.20	1.00	89667 (100%)	559.68	1.00	90849 (100%)

Manuel García Goñi
Universidad Complutense de Madrid

Hyborid Risk Adjustment for Total Health Expenditures

Is that set of VEP conditions valid in our sample?
Table 3: Distribution of health conditions and presence of VEP100 in patients.

Health conditions by Clinical Risk Groups (highest level of aggregation)	Patients with no VEP100 in 2004		Patients with at least one VEP100 in 2004		Patients with no VEP100 in 2005		Patients with at least one VEP100 in 2005	
	N	\% by CRG						
Healthy	60882	95.76	2692	4.24	59411	95.71	2657	4.29
History Of Significant Acute Disease	6481	77.18	1917	22.82	6383	76.61	1949	23.39
Single Minor Chronic Disease	4216	88.27	560	11.73	4536	87.23	664	12.77
Minor Chronic Disease In Multiple Organ Systems	436	83.53	86	16.47	625	80.96	147	19.04
Single Dominant Or Moderate Chronic Disease	4770	56.28	3705	43.72	5688	58.31	4066	41.69
Significant Chronic Disease In Multiple Organ Systems	964	31.61	2086	68.39	1382	35.05	2560	64.95
Dominant Chronic Disease In Three Or More Organ Systems	10	3.87	248	96.13	26	8.42	283	91.58
Dominant, Metastatic, And Complicated Malignancies	5	1.12	439	98.88	6	1.98	296	98.02
Catastrophic Conditions	3	1.76	167	98.24	1	0.005	169	99.99

Manuel García Goñi
Universidad Complutense de Madrid

Hybrid Risk Adjustment for Total Health Expenditures

Is that set of VEP conditions valid in our sample?

Table 4: Distribution of health conditions and presence of VEP50 in patients.

Health conditions by Clinical Risk Groups (highest level of aggregation)	Patients with no VEP50 in 2004		Patients with at least one VEP50 in 2004		Patients with no VEP50 in 2005		Patients with at least one VEP50 in 2005	
	N	\% by CRG						
Healthy	61763	97.15	1811	2.85	60702	97.79	1366	2.21
History Of Significant Acute Disease	6995	83.30	1403	16.70	7201	86.43	1131	13.57
Single Minor Chronic Disease	4430	92.75	346	7.25	4903	94.28	297	5.72
Minor Chronic Disease In Multiple Organ Systems	476	91.19	46	8.81	699	90.55	73	9.45
Single Dominant Or Moderate Chronic Disease	5417	63.91	3058	36.09	7145	73.25	2609	26.75
Significant Chronic Disease In Multiple Organ Systems	1155	37.87	1895	62.13	1932	49.02	2010	50.98
Dominant Chronic Disease In Three Or More Organ Systems	14	5.42	244	94.58	42	13.59	267	86.41
Dominant, Metastatic, And Complicated Malignancies	65	14.64	379	85.36	37	12.26	265	87.74
Catastrophic Conditions	5	2.94	165	97.06	2	1.17	168	98.83

Manuel García Goñi

Hybrid Risk Adjustment for Total

 Health Expenaditures| Predictors | R-squared total health expenditure | $\begin{gathered} \text { R-squared } \\ \text { drug } \\ \text { expenditures } \end{gathered}$ | Percentage of patients | Timing | N | Number of parameters |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Model using only demographic information M1: Only demographic information | 0.0728 | 0.0501 | 100.00\% | Prospective | 90849 | 12 |
| Prospective models including diagnostic and procedures information
 M2a: Only information on CRG conditions
 M2b: Demographic and CRG conditions information
 M2c: Demographic, CRG and existence of VEP100 information | $\begin{aligned} & 0.1995 \\ & 0.2187 \\ & 0.2473 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.1281 \\ & 0.1429 \\ & 0.1605 \\ & \hline \end{aligned}$ | 100.00\% 100.00\% 100.00\% | Prospective Prospective Prospective | $\begin{aligned} & 90849 \\ & 90849 \\ & 88298 \end{aligned}$ | $\begin{gathered} 82 \\ 94 \\ 194 \end{gathered}$ |
| Concurrent models including diagnostic and procedures information
 M3a: Only information on CRG conditions
 M3b: Demographic and CRG conditions information
 M3c: Demographic, CRG and existence of VEP100 information | $\begin{aligned} & 0.3259 \\ & 0.3336 \\ & 0.4614 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.1544 \\ & 0.1640 \\ & 0.3393 \\ & \hline \end{aligned}$ | $\begin{aligned} & 100.00 \% \\ & 100.00 \% \\ & 100.00 \% \end{aligned}$ | Concurrent Concurrent Concurrent | $\begin{aligned} & 90849 \\ & 90849 \\ & 90849 \end{aligned}$ | $\begin{gathered} 82 \\ 94 \\ 194 \end{gathered}$ |
| Dividing the sample between those with and without VEP100 in 2003
 M4a: Only information on CRG conditions
 M4b: Demographic and CRG conditions information
 M4c: Demographic, CRG and VEP information
 M5a: Only information on CRG conditions
 M5b: Demographic and CRG conditions information
 M5c: Demographic, CRG and VEP information
 M6a: Hybrid Model (concurrent m4a for 14.07 and prospective m5a for 85.93%)
 M6b: Hybrid Model (concurrent m4b for 14.07% and prospective m 5 b for 85.93%)
 M6c: Hybrid Model (concurrent m4c for 14.45% and prospective m 5 c for 85.55%) | $\begin{aligned} & 0.2211 \\ & 0.2300 \\ & 0.4614 \\ & \\ & 0.1322 \\ & 0.1603 \\ & 0.1685 \\ & \\ & 0.2006 \\ & \\ & 0.2140 \\ & \\ & 0.3571 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.1089 \\ & 0.1151 \\ & 0.3393 \\ & \\ & 0.0861 \\ & 0.1213 \\ & 0.1313 \\ & \\ & 0.1040 \\ & 0.1164 \\ & \\ & 0.3018 \\ & \hline \end{aligned}$ | $\begin{gathered} 14.07 \% \\ 14.07 \% \\ 14.45 \% \\ 85.93 \% \\ 85.93 \% \\ 85.55 \% \\ 85.93 \%+14.07 \% \\ 85.93 \%+14.07 \% \\ \\ 85.55 \%+14.45 \% \\ \hline \end{gathered}$ | Concurrent Concurrent Concurrent
 Prospective Prospective Prospective
 Hybrid
 Hybrid
 Hybrid | $\begin{aligned} & 12791 \\ & 12791 \\ & 12791 \\ & 78058 \\ & 78058 \\ & 75717 \\ & 90849 \\ & 90849 \\ & 88508 \\ & \hline \end{aligned}$ | 82
 94
 194
 82
 94
 194
 82
 94
 194 |
| Dividing the sample between those with at least one of the $\mathbf{5 0}$
 VEP100 more expensive conditions in 2005
 M7a: Only information on CRG conditions
 M7b: Demographic and CRG conditions information
 M7c: Demographic, CRG and VEP information
 M8a: Only information on CRG conditions
 M8b: Demographic and CRG conditions information
 M8c: Demographic, CRG and VEP information
 M9a: Hybrid Model (concurrent m7a for 9.01% and prospective m8a for 90.99%)
 M9b: Hybrid Model (concurrent m 7 b for 9.01% and prospective m 8 b for 90.99%)
 M9c: Hybrid Model (concurrent m7c for 9.26% and prospective m8c for 90.74%) | $\begin{aligned} & 0.2003 \\ & 0.2079 \\ & 0.4618 \\ & \\ & 0.1481 \\ & 0.1761 \\ & 0.1855 \\ & \\ & 0.1849 \\ & 0.1985 \\ & \\ & 0.3800 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.0984 \\ & 0.1026 \\ & 0.4432 \\ & \\ & 0.1017 \\ & 0.1387 \\ & 0.1475 \\ & \\ & 0.0992 \\ & \\ & 0.1115 \\ & \\ & 0.3704 \\ & \hline \end{aligned}$ | $\begin{gathered} 9.01 \% \\ 9.01 \% \\ 9.26 \% \\ 90.99 \% \\ 90.99 \% \\ 90.74 \% \\ \\ 90.99 \%+9.01 \% \\ 90.99 \%+9.01 \% \\ 90.74 \%+9.26 \% \\ \hline \end{gathered}$ | Concurrent Concurrent Concurrent
 Prospective Prospective Prospective
 Hybrid
 Hybrid
 Hybrid | $\begin{aligned} & 8186 \\ & 8186 \\ & 8186 \\ & 82663 \\ & 82663 \\ & 80201 \\ & 90849 \\ & 90849 \\ & 88387 \\ & \hline \end{aligned}$ | 82
 94
 194
 82
 94
 194

 82

 15
 194 |

Manuel García Gotio Moc: Hybri
0.3800

Hybrid Risk Adjustment for Total Health Expenditures

		Prospective models				Concurrent models			Hybrid model dividing population by appearance of at least one VEP100 condition in 2005			Hybrid model dividing population by appearance of at least one VEP50 condition in 2005		
	N from validating sample of 45142	M1: Only dem.Info	M2a: Only info on CRGs	M2b: Dem. and CRGs info	M2c: Dem. CRG and VEP100 info	Мза: Only info on CRGs	M3b: Dem. and CRGs info	M3c: Dem. CRG and VEP100 info	M6a: Hybrid Model. Only info on CRGs	M6b: Hybrid Model, Dem. and CRGs info	M6c: Hybrid Model, Dem. CRG and VEP100 info	M9a: Hybrid Model. Only info on CRGs	M9b: Hybrid Model, Demo and CRGs info	M9c: Hybrid Model, Demo, CRG and VEP100 info
total	45142	1,0431	1,0509	1,0525	1,0669	1,0223	1,0520	1,0218	1,0311	1,0312	1,0491	1,0343	1,0356	1,0433
Predictive Ratios by health conditions in 2005														
Healthy	30941	2,3963	1,9527	1,8239	1,8187	1,0492	1,0469	1,0419	1,5259	1,4763	1,4898	1,6145	1,5529	1,5563
History Of Significant Acute Disease	4101	0,6037	0,6617	0,6669	0,6610	1,0267	1,0304	1,0601	0,7663	0,7662	0,8084	0,7311	0,7352	0,7276
Single Minor Chronic Disease	2533	0,9438	0,9282	0,9743	0,9732	1,0118	1,0138	1,0021	0,7866	0,8193	0,8184	0,7996	0,8379	0,8289
Minor Chronic Disease In Multiple Organ Systems	381	0,7600	0,7549	0,8374	0,8376	1,0302	1,0493	1,0452	0,7100	0,7612	0,7437	0,6943	0,7518	0,7368
Single Dominant Or Moderate Chronic Disease	4807	0,7253	0,8583	0,9173	0,9294	0,9618	0,9602	0,9993	0,8312	0,8522	0,9046	0,8135	0,8425	0,8914
Significant Chronic Disease In Multiple Organ Systems	1987	0,5038	0,6834	0,7395	0,7504	1,0625	1,0653	1,0012	0,9548	0,9699	0,9061	0,9039	0,9243	0,8643
Dominant Chronic Disease In Three Or More Organ Systems	162	0,2682	0,4425	0,4694	0,5110	0,9399	0,9410	0,9301	0,9119	0,9144	0,9041	0,8741	0,8776	0,8704
Dominant, Metastatic, And Complicated Malignancies	147	0,2594	0,4040	0,4324	0,4432	1,1500	1,1490	1,1685	1,1435	1,1434	1,1676	1,0929	1,0950	1,1543
Catastrophic Conditions	83	0,0603	0,8028	0,7990	0,7295	1,2804	1,2779	1,1780	1,2656	1,2627	1,1611	1,2758	1,2753	1,1551
Predictive Ratios by deciles of drug expenditures in 2005														
decile 1 to 5	22628	9,0129	6,5030	5,8186	5,7242	3,6334	3,3458	3,2141	5,0562	4,6936	4,6816	5,3498	4,9659	4,9058
decile 6	4592	2,1210	2,2266	2,0557	2,0338	1,9852	1,9067	2,0293	1,9067	1,8019	2,0018	1,9256	1,8250	1,8172
decile 7	4455	1,5788	1,7229	1,6818	1,6405	1,6514	1,6250	1,5466	1,4896	1,4554	1,4446	1,4875	1,4641	1,4681
decile 8	4530	1,1627	1,2732	1,3030	1,2944	1,3354	1,3506	1,2813	1,1910	1,2028	1,1766	1,1726	1,1910	1,1657
decile 9	4411	0,8480	0,9130	1,0007	1,0156	1,0528	1,0945	1,1137	0,9394	0,9889	1,0196	0,9076	0,9636	1,0038
decile 10	4574	0,3101	0,4367	0,4714	0,4911	0,5604	0,6190	0,6448	0,5506	0,5696	0,5656	0,5460	0,5644	0,5597
Predictive Ratios by appearance of VEP procedures in 2005														
no VEP100 in 2005	38901	1,5849	1,4093	1,3785	1,3595	1,1249	1,1735	0,9832	1,0276	1,0307	1,0473	1,1102	1,1107	1,1142
at least one VEP100 in 2005	6241	0,4652	0,6728	0,7097	0,7556	0,9227	0,9321	1,0633	1,0473	1,0441	1,0413	0,9639	0,9661	0,9653
no VEP50 in 2005	41140	1,4306	1,3123	1,2883	1,2727	1,1071	1,1457	1,0025	1,0640	1,0553	1,0471	1,0269	1,0298	1,0412
at least one VEP50 in 2005	4002	0,4212	0,6356	0,6792	0,7344	0,8960	0,9115	1,0534	0,9900	1,0045	1,0426	1,0591	1,0578	1,0355

Table 6: Predictive Ratios for the different risk adjustment models
Manuel García Goñi
Universidad Complutense de Madrid

Hyborid Risk Adjustment for Total Health Expenditures

1. Introduction
2. Data and Methodology
3. Hybrid Risk Adjustment
4. Conclusions

Manuel García Goñi
Universidad Complutense de Madrid

Conclusions

Prospective models explain around 24% of the variance in the total health expenditures using information of CRG categories and VEP conditions.

- Concurrent models increases the predictive power up to 33% (CRGs) y 46% (CRGs+VEP) for total health expenditures
- Dividing population into groups with or without VEP100 (VEP50) conditions through the hybrid model, the predictive power of the prospective model is reduced. As a consequence, for patients at risk of suffering risk selection (around 12\%):
- Efficiency incentives are reduced
- But risk selection incentives are eliminated
\square There are no negative effects for the rest of the population
- Using the Predictive Ratios, we observe how the hybrid risk adjustment model obtain better estimations for individuals suffering VEP conditions and similar estimations for the rest of the population.
- Integrated healthcare management organizations can benefit from Hybrid Risk Adjustment Models that would allow to set better and more realistic budget constraint for total health expenditures depending on the morbility,
- Providing incentives for efficiency.
- Reducing incentives for risk selection
\square More research is needed in the refinement of the definition of high cost conditions (even with VEP50, still too much concurrent reimbursement: near 50% with VEP100 and near 40\% with VEP50)

Manuel García Goñi
Universidad Complutense de Madrid

